Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 15.006
1.
Phys Med ; 121: 103367, 2024 May.
Article En | MEDLINE | ID: mdl-38701625

PURPOSE: Diffusing alpha-emitters radiation therapy (DaRT) is a brachytherapy technique using α-particles to treat solid tumours. The high linear energy transfer (LET) and short range of α-particles make them good candidates for the targeted treatment of cancer. Treatment planning of DaRT requires a good understanding of the dose from α-particles and the other particles released in the 224Ra decay chain. METHODS: The Geant4 Monte Carlo toolkit has been used to simulate a DaRT seed to better understand the dose contribution from all particles and simulate the DNA damage due to this treatment. RESULTS: Close to the seed α-particles deliver the majority of dose, however at radial distances greater than 4 mm, the contribution of ß-particles is greater. The RBE has been estimated as a function of number of double strand breaks (DSBs) and complex DSBs. A maximum seed spacing of 5.5 mm and 6.5 mm was found to deliver at least 20 Gy RBE weighted dose between the seeds for RBEDSB and RBEcDSB respectively. CONCLUSIONS: The DNA damage changes with radial distance from the seed and has been found to become less complex with distance, which is potentially easier for the cell to repair. Close to the seed α-particles contribute the majority of dose, however the contribution from other particles cannot be neglected and may influence the choice of seed spacing.


Alpha Particles , DNA Damage , Monte Carlo Method , Alpha Particles/therapeutic use , Radiotherapy Dosage , Radiation Dosage , Relative Biological Effectiveness , Diffusion , Brachytherapy/methods , Humans , Linear Energy Transfer , Radiotherapy Planning, Computer-Assisted/methods , DNA Breaks, Double-Stranded/radiation effects
2.
Phys Med ; 121: 103364, 2024 May.
Article En | MEDLINE | ID: mdl-38701626

PURPOSE: Test whether a well-grounded KBP model trained on moderately hypo-fractionated prostate treatments can be used to satisfactorily drive the optimization of SBRT prostate treatments. MATERIALS AND METHODS: A KBP model (SBRT-model) was developed, trained and validated using the first forty-seven clinically treated VMAT SBRT prostate plans (42.7 Gy/7fx or 36.25 Gy/5fx). The performance and robustness of this model were compared against a high-quality KBP-model (ST-model) that was already clinically adopted for hypo-fractionated (70 Gy/28fx and 60 Gy/20fx) prostate treatments. The two models were compared in terms of their predictions robustness, and the quality of their outcomes were evaluated against a set of reference clinical SBRT plans. Plan quality was assessed using DVH metrics, blinded clinical ranking, and a dedicated Plan Quality Metric algorithm. RESULTS: The plan libraries of the two models were found to share a high degree of anatomical similarity. The overall quality (APQM%) of the plans obtained both with the ST- and SBRT-models was compatible with that of the original clinical plans, namely (93.7 ± 4.1)% and (91.6 ± 3.9)% vs (92.8.9 ± 3.6)%. Plans obtained with the ST-model showed significantly higher target coverage (PTV V95%): (97.9 ± 0.8)% vs (97.1 ± 0.9)% (p < 0.05). Conversely, plans optimized following the SBRT-model showed a small but not-clinically relevant increase in OAR sparing. ST-model generally provided more reliable predictions than SBRT-model. Two radiation oncologists judged as equivalent the plans based on the KBP prediction, which was also judged better that reference clinical plans. CONCLUSION: A KBP model trained on moderately fractionated prostate treatment plans provided optimal SBRT prostate plans, with similar or larger plan quality than an embryonic SBRT-model based on a limited number of cases.


Prostatic Neoplasms , Radiosurgery , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiosurgery/methods , Male , Prostatic Neoplasms/radiotherapy , Knowledge Bases , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage
3.
World J Surg Oncol ; 22(1): 125, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720338

BACKGROUND: To investigate the correlation between microinvasion and various features of hepatocellular carcinoma (HCC), and to clarify the microinvasion distance from visible HCC lesions to subclinical lesions, so as to provide clinical basis for the expandable boundary of clinical target volume (CTV) from gross tumor volume (GTV) in the radiotherapy of HCC. METHODS: HCC patients underwent hepatectomy of liver cancer in our hospital between July 2019 and November 2021 were enrolled. Data on various features and tumor microinvasion distance were collected. The distribution characteristics of microinvasion distance were analyzed to investigate its potential correlation with various features. Tumor size compared between radiographic and pathologic samples was analyzed to clarify the application of pathologic microinvasion to identify subclinical lesions of radiographic imaging. RESULTS: The average microinvasion distance was 0.6 mm, with 95% patients exhibiting microinvasion distance less than 3.0 mm, and the maximum microinvasion distance was 4.0 mm. A significant correlation was found between microinvasion and liver cirrhosis (P = 0.036), serum albumin level (P = 0.049). Multivariate logistic regression analysis revealed that HCC patients with cirrhosis had a significantly lower risk of microinvasion (OR = 0.09, 95%CI = 0.02 ~ 0.50, P = 0.006). Tumor size was overestimated by 1.6 mm (95%CI=-12.8 ~ 16.0 mm) on radiographic size compared to pathologic size, with a mean %Δsize of 2.96% (95%CI=-0.57%~6.50%). The %Δsize ranged from - 29.03% to 34.78%. CONCLUSIONS: CTV expanding by 5.4 mm from radiographic GTV could include all pathologic microinvasive lesions in the radiotherapy of HCC. Liver cirrhosis was correlated with microinvasion and were independent predictive factor of microinvasion in HCC.


Carcinoma, Hepatocellular , Hepatectomy , Liver Neoplasms , Neoplasm Invasiveness , Tumor Burden , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/radiotherapy , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/pathology , Liver Neoplasms/radiotherapy , Liver Neoplasms/diagnostic imaging , Male , Female , Middle Aged , Prognosis , Hepatectomy/methods , Aged , Follow-Up Studies , Retrospective Studies , Adult , Radiotherapy Planning, Computer-Assisted/methods , Liver Cirrhosis/pathology
4.
Biomed Phys Eng Express ; 10(4)2024 May 14.
Article En | MEDLINE | ID: mdl-38697028

Background and purpose. To investigate models developed using radiomic and dosiomic (multi-omics) features from planning and treatment imaging for late patient-reported dysphagia in head and neck radiotherapy.Materials and methods. Training (n = 64) and testing (n = 23) cohorts of head and neck cancer patients treated with curative intent chemo-radiotherapy with a follow-up time greater than 12 months were retrospectively examined. Patients completed the MD Anderson Dysphagia Inventory and a composite score ≤60 was interpreted as patient-reported dysphagia. A chart review collected baseline dysphagia and clinical factors. Multi-omic features were extracted from planning and last synthetic CT images using the pharyngeal constrictor muscle contours as a region of interest. Late patient-reported dysphagia models were developed using a random forest backbone, with feature selection and up-sampling methods to account for the imbalanced data. Models were developed and validated for multi-omic feature combinations for both timepoints.Results. A clinical and radiomic feature model developed using the planning CT achieved good performance (validation: sensitivity = 80 ± 27% / balanced accuracy = 71 ± 23%, testing: sensitivity = 80 ± 10% / balanced accuracy = 73 ± 11%). The synthetic CT models did not show improvement over the plan CT multi-omics models, with poor reliability of the radiomic features on these images. Dosiomic features extracted from the synthetic CT showed promise in predicting late patient-reported dysphagia.Conclusion. Multi-omics models can predict late patient-reported dysphagia in head and neck radiotherapy patients. Synthetic CT dosiomic features show promise in developing successful models to account for changes in delivered dose distribution. Multi-center or prospective studies are required prior to clinical implementation of these models.


Deglutition Disorders , Head and Neck Neoplasms , Humans , Deglutition Disorders/etiology , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/complications , Male , Middle Aged , Female , Aged , Retrospective Studies , Tomography, X-Ray Computed/methods , Radiotherapy Planning, Computer-Assisted/methods , Adult , Reproducibility of Results , Radiotherapy Dosage , Patient Reported Outcome Measures , Multiomics
5.
Radiat Environ Biophys ; 63(2): 297-306, 2024 May.
Article En | MEDLINE | ID: mdl-38722389

For locally advanced cervical cancer, the standard therapeutic approach involves concomitant chemoradiation therapy, supplemented by a brachytherapy boost. Moreover, an external beam radiotherapy (RT) boost should be considered for treating gross lymph node (LN) volumes. Two boost approaches exist with Volumetric Intensity Modulated Arc Therapy (VMAT): Sequential (SEQ) and Simultaneous Integrated Boost (SIB). This study undertakes a comprehensive dosimetric and radiobiological comparison between these two boost strategies. The study encompassed ten patients who underwent RT for cervical cancer with node-positive disease. Two sets of treatment plans were generated for each patient: SIB-VMAT and SEQ-VMAT. Dosimetric as well as radiobiological parameters including tumour control probability (TCP) and normal tissue complication probability (NTCP) were compared. Both techniques were analyzed for two different levels of LN involvement - only pelvic LNs and pelvic with para-aortic LNs. Statistical analysis was performed using SPSS software version 25.0. SIB-VMAT exhibited superior target coverage, yielding improved doses to the planning target volume (PTV) and gross tumour volume (GTV). Notably, SIB-VMAT plans displayed markedly superior dose conformity. While SEQ-VMAT displayed favorable organ sparing for femoral heads, SIB-VMAT appeared as the more efficient approach for mitigating bladder and bowel doses. TCP was significantly higher with SIB-VMAT, suggesting a higher likelihood of successful tumour control. Conversely, no statistically significant difference in NTCP was observed between the two techniques. This study's findings underscore the advantages of SIB-VMAT over SEQ-VMAT in terms of improved target coverage, dose conformity, and tumour control probability. In particular, SIB-VMAT demonstrated potential benefits for cases involving para-aortic nodes. It is concluded that SIB-VMAT should be the preferred approach in all cases of locally advanced cervical cancer.


Radiotherapy Dosage , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/pathology , Female , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiometry , Middle Aged , Organs at Risk/radiation effects , Lymphatic Metastasis/radiotherapy
6.
Biomed Phys Eng Express ; 10(4)2024 May 10.
Article En | MEDLINE | ID: mdl-38697044

Objective.The aim of this work was to develop a Phase I control chart framework for the recently proposed multivariate risk-adjusted Hotelling'sT2chart. Although this control chart alone can identify most patients receiving extreme organ-at-risk (OAR) dose, it is restricted by underlying distributional assumptions, making it sensitive to extreme observations in the sample, as is typically found in radiotherapy plan quality data such as dose-volume histogram (DVH) points. This can lead to slightly poor-quality plans that should have been identified as out-of-control (OC) to be signaled in-control (IC).Approach. We develop a robust iterative control chart framework to identify all OC patients with abnormally high OAR dose and improve them via re-optimization to achieve an IC sample prior to establishing the Phase I control chart, which can be used to monitor future treatment plans.Main Results. Eighty head-and-neck patients were used in this study. After the first iteration, P14, P67, and P68 were detected as OC for high brainstem dose, warranting re-optimization aimed to reduce brainstem dose without worsening other planning criteria. The DVH and control chart were updated after re-optimization. On the second iteration, P14, P67, and P68 were IC, but P40 was identified as OC. After re-optimizing P40's plan and updating the DVH and control chart, P40 was IC, but P14* (P14's re-optimized plan) and P62 were flagged as OC. P14* could not be re-optimized without worsening target coverage, so only P62 was re-optimized. Ultimately, a fully IC sample was achieved. Multiple iterations were needed to identify and improve all OC patients, and to establish a more robust control limit to monitor future treatment plans.Significance. The iterative procedure resulted in a fully IC sample of patients. With this sample, a more robust Phase I control chart that can monitor OAR doses of new plans was established.


Organs at Risk , Quality Control , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Organs at Risk/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Head and Neck Neoplasms/radiotherapy , Algorithms
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 773-779, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38708512

OBJECTIVE: To investigate the dosimetric difference between manual and inverse optimization in 3-dimensional (3D) brachytherapy for gynecologic tumors. METHODS: This retrospective study was conducted among a total of 110 patients with gynecologic tumors undergoing intracavitary combined with interstitial brachytherapy or interstitial brachytherapy. Based on the original images, the brachytherapy plans were optimized for each patient using Gro, IPSA1, IPSA2 (with increased volumetric dose limits on the basis of IPSA1) and HIPO algorithms. The dose-volume histogram (DVH) parameters of the clinical target volume (CTV) including V200, V150, V100, D90, D98 and CI, and the dosimetric parameters D2cc, D1cc, and D0.1cc for the bladder, rectum, and sigmoid colon were compared among the 4 plans. RESULTS: Among the 4 plans, Gro optimization took the longest time, followed by HIPO, IPSA2 and IPSA1 optimization. The mean D90, D98, and V100 of HIPO plans were significantly higher than those of Gro and IPSA plans, and D90 and V100 of IPSA1, IPSA2 and HIPO plans were higher than those of Gro plans (P < 0.05), but the CI of the 4 plans were similar (P > 0.05). For the organs at risk (OARs), the HIPO plan had the lowest D2cc of the bladder and rectum; the bladder absorbed dose of Gro plans were significantly greater than those of IPSA1 and HIPO (P < 0.05). The D2cc and D1cc of the rectum in IPSA1, IPSA2 and HIPO plans were better than Gro (P < 0.05). The D2cc and D1cc of the sigmoid colon did not differ significantly among the 4 plans. CONCLUSION: Among the 4 algorithms, the HIPO algorithm can better improve dose coverage of the target and lower the radiation dose of the OARs, and is thus recommended for the initial plan optimization. Clinically, the combination of manual optimization can achieve more individualized dose distribution of the plan.


Algorithms , Brachytherapy , Genital Neoplasms, Female , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Brachytherapy/methods , Female , Retrospective Studies , Genital Neoplasms, Female/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiometry/methods
8.
Radiat Oncol ; 19(1): 54, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702761

BACKGROUND: Stereotactic ablative body radiotherapy (SABR) is an emerging treatment alternative for patients with localized low and intermediate risk prostate cancer patients. As already explored by some authors in the context of conventional moderate hypofractionated radiotherapy, focal boost of the index lesion defined by magnetic resonance imaging (MRI) is associated with an improved biochemical outcome. The objective of this phase II trial is to determine the effectiveness (in terms of biochemical, morphological and functional control), the safety and impact on quality of life, of prostate SABR with MRI guided focal dose intensification in males with intermediate and high-risk localized prostate cancer. METHODS: Patients with intermediate and high-risk prostate cancer according to NCCN definition will be treated with SABR 36.25 Gy in 5 fractions to the whole prostate gland with MRI guided simultaneous integrated focal boost (SIB) to the index lesion (IL) up to 50 Gy in 5 fractions, using a protocol of bladder trigone and urethra sparing. Intra-fractional motion will be monitored with daily cone beam computed tomography (CBCT) and intra-fractional tracking with intraprostatic gold fiducials. Androgen deprivation therapy (ADT) will be allowed. The primary endpoint will be efficacy in terms of biochemical and local control assessed by Phoenix criteria and post-treatment MRI respectively. The secondary endpoints will encompass acute and late toxicity, quality of life (QoL) and progression-free survival. Finally, the subgroup of high-risk patients will be involved in a prospective study focused on immuno-phenotyping. DISCUSSION: To the best of our knowledge, this is the first trial to evaluate the impact of post-treatment MRI on local control among patients with intermediate and high-risk prostate cancer undergoing SABR and MRI guided focal intensification. The results of this trial will enhance our understanding of treatment focal intensification through the employment of the SABR technique within this specific patient subgroup, particularly among those with high-risk disease, and will help to clarify the significance of MRI in monitoring local responses. Hopefully will also help to design more personalized biomarker-based phase III trials in this specific context. Additionally, this trial is expected to be incorporated into a prospective radiomics study focused on localized prostate cancer treated with radiotherapy. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT05919524; Registered 17 July 2023. TRIAL SPONSOR: IRAD/SEOR (Instituto de Investigación de Oncología Radioterápica / Sociedad Española de Oncología Radioterápica). STUDY SETTING: Clinicaltrials.gov identifier: NCT05919524; Registered 17 July 2023. TRIAL STATUS: Protocol version number and date: v. 5/ 17 May-2023. Date of recruitment start: August 8, 2023. Date of recruitment completion: July 1, 2024.


Prostatic Neoplasms , Radiosurgery , Radiotherapy, Image-Guided , Humans , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Radiosurgery/methods , Radiotherapy, Image-Guided/methods , Urinary Bladder/radiation effects , Organs at Risk/radiation effects , Organ Sparing Treatments/methods , Magnetic Resonance Imaging/methods , Prospective Studies , Quality of Life , Radiotherapy Dosage , Aged , Radiotherapy Planning, Computer-Assisted/methods , Middle Aged
9.
J Appl Clin Med Phys ; 25(5): e14343, 2024 May.
Article En | MEDLINE | ID: mdl-38569013

PURPOSE: Single-isocenter multi-target intracranial stereotactic radiotherapy (SIMT) is an effective treatment for brain metastases with complex treatment plans and delivery optimization necessitating rigorous quality assurance. This work aims to assess five methods for quality assurance of SIMT treatment plans in terms of their suitability and sensitivity to delivery errors. METHODS: Sun Nuclear ArcCHECK and SRS MapCHECK, GafChromic EBT Radiochromic Film, machine log files, and Varian Portal Dosimetry were all used to measure 15 variations of a single SIMT plan. Variations of the original plan were created with Python. They comprised various degrees of systematic MLC offsets per leaf up to 2 mm, random per-leaf variations with differing minimum and maximum magnitudes, simulated collimator, and dose miscalibrations (MU scaling). The erroneous plans were re-imported into Eclipse and plan-quality degradation was assessed by comparing each plan variation to the original clinical plan in terms of the percentage of clinical goals passing relative to the original plan. Each erroneous plan could be then ranked by the plan-quality degradation percentage following recalculation in the TPS so that the effects of each variation could be correlated with γ pass rates and detector suitability. RESULTS & CONCLUSIONS: It was found that 2%/1 mm is a good starting point for the ArcCHECK, Portal Dosimetry, and the SRS MapCHECK methods, respectively, and provides clinically relevant error detection sensitivity. Looser dose criteria of 5%/1 mm or 5%/1.5 mm are suitable for film dosimetry and log-file-based methods. The statistical methods explored can be expanded to other areas of patient-specific QA and detector assessment.


Brain Neoplasms , Quality Assurance, Health Care , Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Brain Neoplasms/radiotherapy , Radiosurgery/methods , Radiosurgery/instrumentation , Quality Assurance, Health Care/standards , Radiotherapy, Intensity-Modulated/methods , Particle Accelerators/instrumentation , Radiometry/methods , Radiometry/instrumentation , Algorithms
10.
J Appl Clin Med Phys ; 25(5): e14337, 2024 May.
Article En | MEDLINE | ID: mdl-38576183

PURPOSE: The quality of on-board imaging systems, including cone-beam computed tomography (CBCT), plays a vital role in image-guided radiation therapy (IGRT) and adaptive radiotherapy. Recently, there has been an upgrade of the CBCT systems fused in the O-ring linear accelerators called HyperSight, featuring a high imaging performance. As the characterization of a new imaging system is essential, we evaluated the image quality of the HyperSight system by comparing it with Halcyon 3.0 CBCT and providing benchmark data for routine imaging quality assurance. METHODS: The HyperSight features ultra-fast scan time, a larger kilovoltage (kV) detector, a more substantial kV tube, and an advanced reconstruction algorithm. Imaging protocols in the two modes of operation, treatment mode with IGRT and the CBCT for planning (CBCTp) mode were evaluated and compared with Halcyon 3.0 CBCT. Image quality metrics, including spatial resolution, contrast resolution, uniformity, noise, computed tomography (CT) number linearity, and calibration error, were assessed using a Catphan and an electron density phantom and analyzed with TotalQA software. RESULTS: HyperSight demonstrated substantial improvements in contrast-to-noise ratio and noise in both IGRT and CBCTp modes compared to Halcyon 3.0 CBCT. CT number calibration error of HyperSight CBCTp mode (1.06%) closely matches that of a full CT scanner (0.72%), making it suitable for adaptive planning. In addition, the advanced hardware of HyperSight, such as ultra-fast scan time (5.9 s) or 2.5 times larger heat unit capacity, enhanced the clinical efficiency in our experience. CONCLUSIONS: HyperSight represented a significant advancement in CBCT imaging. With its image quality, CT number accuracy, and ultra-fast scans, HyperSight has a potential to transform patient care and treatment outcomes. The enhanced scan speed and image quality of HyperSight are expected to significantly improve the quality and efficiency of treatment, particularly benefiting patients.


Algorithms , Cone-Beam Computed Tomography , Image Processing, Computer-Assisted , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Cone-Beam Computed Tomography/methods , Particle Accelerators/instrumentation , Humans , Radiotherapy Planning, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods , Quality Assurance, Health Care/standards , Radiographic Image Interpretation, Computer-Assisted/methods
11.
J Appl Clin Med Phys ; 25(5): e14344, 2024 May.
Article En | MEDLINE | ID: mdl-38615273

PURPOSE: Radiotherapy (RT) treatment and treatment planning is a complex process prepared and delivered by a multidisciplinary team of specialists. Efficient communication and notification systems among different team members are therefore essential to ensure the safe, timely delivery of treatments to patients. METHOD: To address this issue, we developed and implemented automated notification systems and an electronic whiteboard to track every CT simulation, contouring task, the new-start schedule, and physician's appointments and tasks, and notify team members of overdue and missing tasks and appointments. The electronic whiteboard was developed to have a straightforward view of current patients' planning workflow and to help different team members coordinate with each other. The systems were implemented and have been used at our center to monitor the progress of treatment-planning tasks for over 2 years. RESULTS: The last-minute plans were relatively reduced by about 40% in 2023 compared to 2021 and 2022 with a p-value < 0.05. The overdue contouring tasks of more than 1 day decreased from 46.8% in 2019 and 33.6% in 2020 to 20%-26.4% in 2021-2023 with a p-value < 0.05 after the implementation of the notification system. The rate of plans with 1-3 day planning time decreased by 20.31%, 39.32%, and 24.08% with a p-value < 0.05 and the rate of plans with 1-3 day planning time due to the contouring task overdue more than 1 day decreased by 49.49%, 56.89%, and 46.52% with a p-value < 0.05 after the implementation. The rate of outstanding appointments that are overdue by more than 7 days decreased by more than 5% with a p-value < 0.05 following the implementation of the system. CONCLUSIONS: Our experience shows that this system requires minimal human intervention, improves the treatment planning workflow and process by reducing errors and delays in the treatment planning process, positively impacts on-time treatment plan completion, and reduces the need for compressed or rushed treatment planning timelines.


Neoplasms , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Workflow , Tomography, X-Ray Computed/methods
12.
J Appl Clin Med Phys ; 25(5): e14357, 2024 May.
Article En | MEDLINE | ID: mdl-38620027

PURPOSE: To investigate and characterize the performance of a novel orthogonal dual-layer alpha multileaf collimator (αMLC) mounted on the LinaTech VenusX linac. METHODS: We evaluated leaf positioning accuracy and reproducibility using an electronic portal imaging device through the picket fence test. The average, interleaf, intraleaf, and leaf tip transmissions of the single and dual layers were measured using an ionization chamber. Square and rhombus fields were used to evaluate the leaf penumbra of αMLC. To investigate the advantages of the orthogonal dual-layer multileaf collimator (MLC) in field shaping, right triangular and circular pattern fields were formed using both the dual layers and single layers of the αMLC. RESULTS: The average maximum positioning deviations of the upper and lower αMLC over 1 year were 0.76 ± 0.09 mm and 0.62 ± 0.07 mm, respectively. The average transmissions were 1.87%, 1.83%, and 0.03% for the upper-, lower- and dual-layer αMLC, respectively. The maximum interleaf transmissions of the lower- and dual-layer were 2.43% and 0.17%, respectively. The leaf tip transmissions were 9.34% and 0.25%, respectively. The penumbra of the square field was 6.2 mm in the X direction and 8.0 mm in the Y direction. The average penumbras of the rhombus fields with side lengths of 5 and 10 cm were 3.6 and 4.9 mm, respectively. For the right triangular and circular fields, the fields shaped by the dual-layer leaves were much closer to the set field than those shaped by single-layer leaves. The dose undulation amplitude of the 50% isodose lines and leaf stepping angle change of the dual-layer leaves were smaller than those of the single-layer leaves. CONCLUSIONS: The αMLC benefits from its orthogonal dual-layer design. Leaf transmission, dose undulations at the field edge, and MLC field dependence of the leaf stepping angle of the dual-layer αMLC were remarkably reduced.


Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Particle Accelerators/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Neoplasms/radiotherapy , Phantoms, Imaging
13.
J Appl Clin Med Phys ; 25(5): e14361, 2024 May.
Article En | MEDLINE | ID: mdl-38642406

PURPOSES: This study aimed to develop and validate algorithms for automating intensity modulated radiation therapy (IMRT) planning in breast cancer patients, with a focus on patient anatomical characteristics. MATERIAL AND METHODS: We retrospectively selected 400 breast cancer patients without lymph node involvement for automated treatment planning. Automation was achieved using the Eclipse Scripting Application Programming Interface (ESAPI) integrated into the Eclipse Treatment Planning System. We employed three beam insertion geometries and three optimization strategies, resulting in 3600 plans, each delivering a 40.05 Gy dose in 15 fractions. Gantry angles in the tangent fields were selected based on a criterion involving the minimum intersection area between the Planning Target Volume (PTV) and the ipsilateral lung in the Beam's Eye View projection. ESAPI was also used to gather patient anatomical data, serving as input for Random Forest models to select the optimal plan. The Random Forest classification considered both beam insertion geometry and optimization strategy. Dosimetric data were evaluated in accordance with the Radiation Therapy Oncology Group (RTOG) 1005 protocol. RESULTS: Overall, all approaches generated high-quality plans, with approximately 94% meeting the acceptable dose criteria for organs at risk and/or target coverage as defined by RTOG guidelines. Average automated plan generation time ranged from 6 min and 37 s to 9 min and 22 s, with the mean time increasing with additional fields. The Random Forest approach did not successfully enable automatic planning strategy selection. Instead, our automated planning system allows users to choose from the tested geometry and strategy options. CONCLUSIONS: Although our attempt to correlate patient anatomical features with planning strategy using machine learning tools was unsuccessful, the resulting dosimetric outcomes proved satisfactory. Our algorithm consistently produced high-quality plans, offering significant time and efficiency advantages.


Algorithms , Breast Neoplasms , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Female , Breast Neoplasms/radiotherapy , Organs at Risk/radiation effects , Retrospective Studies , Automation , Prognosis
14.
J Appl Clin Med Phys ; 25(5): e14345, 2024 May.
Article En | MEDLINE | ID: mdl-38664894

PURPOSE: To establish the clinical applicability of deep-learning organ-at-risk autocontouring models (DL-AC) for brain radiotherapy. The dosimetric impact of contour editing, prior to model training, on performance was evaluated for both CT and MRI-based models. The correlation between geometric and dosimetric measures was also investigated to establish whether dosimetric assessment is required for clinical validation. METHOD: CT and MRI-based deep learning autosegmentation models were trained using edited and unedited clinical contours. Autosegmentations were dosimetrically compared to gold standard contours for a test cohort. D1%, D5%, D50%, and maximum dose were used as clinically relevant dosimetric measures. The statistical significance of dosimetric differences between the gold standard and autocontours was established using paired Student's t-tests. Clinically significant cases were identified via dosimetric headroom to the OAR tolerance. Pearson's Correlations were used to investigate the relationship between geometric measures and absolute percentage dose changes for each autosegmentation model. RESULTS: Except for the right orbit, when delineated using MRI models, the dosimetric statistical analysis revealed no superior model in terms of the dosimetric accuracy between the CT DL-AC models or between the MRI DL-AC for any investigated brain OARs. The number of patients where the clinical significance threshold was exceeded was higher for the optic chiasm D1% than other OARs, for all autosegmentation models. A weak correlation was consistently observed between the outcomes of dosimetric and geometric evaluations. CONCLUSIONS: Editing contours before training the DL-AC model had no significant impact on dosimetry. The geometric test metrics were inadequate to estimate the impact of contour inaccuracies on dose. Accordingly, dosimetric analysis is needed to evaluate the clinical applicability of DL-AC models in the brain.


Brain Neoplasms , Deep Learning , Magnetic Resonance Imaging , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed , Humans , Organs at Risk/radiation effects , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Brain Neoplasms/radiotherapy , Brain Neoplasms/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Radiometry/methods , Image Processing, Computer-Assisted/methods
15.
J Appl Clin Med Phys ; 25(5): e14336, 2024 May.
Article En | MEDLINE | ID: mdl-38664983

PURPOSE: Ring and tandem (R&T) applicator digitization is currently performed at our institution by manually defining the extent of the applicators. Digitization can also be achieved using solid applicators: predefined, 3D models with geometric constraints. This study compares R&T digitization using manual and solid applicator methods through Failure Modes and Effects Analyses (FMEAs) and comparative time studies. We aim to assess the suitability of solid applicator method implementation for R&T cases METHODS: Six qualified medical physicists (QMPs) and two medical physics residents scored potential modes of failure of manual digitization in an FMEA as recommended by TG-100. Occurrence, severity, and detectability (OSD) values were averaged across respondents and then multiplied to form combined Risk Priority Numbers (RPNs) for analysis. Participants were trained to perform treatment planning using a developed solid applicator protocol and asked to score a second FMEA on the distinct process steps from the manual method. For both methods, participant digitization was timed. FMEA and time data were analyzed across methods and participant samples RESULTS: QMPs rated the RPNs of the current, manual method of digitization statistically lower than residents did. When comparing the unique FMEA steps between the two digitization methods, QMP respondents found no significant difference in RPN means. Residents, however, rated the solid applicator method as higher risk. Further, after the solid applicator method was performed twice by participants, the time to digitize plans was not significantly different from manual digitization CONCLUSIONS: This study indicates the non-inferiority of the solid applicator method to manual digitization in terms of risk, according to QMPs, and time, across all participants. Differences were found in FMEA evaluation and solid applicator technique adoption based on years of brachytherapy experience. Further practice with the solid applicator protocol is recommended because familiarity is expected to lower FMEA occurrence ratings and further reduce digitization times.


Brachytherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Brachytherapy/methods , Brachytherapy/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Healthcare Failure Mode and Effect Analysis , Neoplasms/radiotherapy
16.
J Appl Clin Med Phys ; 25(5): e14366, 2024 May.
Article En | MEDLINE | ID: mdl-38669190

PURPOSE: Skin collimation is a useful tool in electron beam therapy (EBT) to decrease the penumbra at the field edge and minimize dose to nearby superficial organs at risk (OARs), but manually fabricating these collimation devices in the clinic to conform to the patient's anatomy can be a difficult and time intensive process. This work compares two types of patient-specific skin collimation (in-house 3D printed and vendor-provided machined brass) using clinically relevant metrics. METHODS: Attenuation measurements were performed to determine the thickness of each material needed to adequately shield both 6 and 9 MeV electron beams. Relative and absolute dose planes at various depths were measured using radiochromic film to compare the surface dose, flatness, and penumbra of the different skin collimation materials. RESULTS: Clinically acceptable thicknesses of each material were determined for both 6 and 9 MeV electron beams. Field width, flatness, and penumbra results between the two systems were very similar and significantly improved compared to measurements performed with no surface collimation. CONCLUSION: Both skin collimation methods investigated in this work generate sharp penumbras at the field edge and can minimize dose to superficial OARs compared to treatment fields with no surface collimation. The benefits of skin collimation are greatest for lower energy electron beams, and the benefits decrease as the measurement depth increases. Using bolus with skin collimation is recommended to avoid surface dose enhancement seen with collimators placed on the skin surface. Ultimately, the appropriate choice of material will depend on the desire to create these devices in-house or outsource the fabrication to a vendor.


Electrons , Organs at Risk , Printing, Three-Dimensional , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Skin , Humans , Electrons/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk/radiation effects , Skin/radiation effects , Phantoms, Imaging , Neoplasms/radiotherapy , Particle Accelerators/instrumentation
17.
Asian Pac J Cancer Prev ; 25(4): 1383-1390, 2024 04 01.
Article En | MEDLINE | ID: mdl-38680000

BACKGROUND: The study aims to investigate potential dosimetric benefits between non-coplanar and coplanar beam arrangements of Volumetric-Modulated Arc Therapy (VMAT) plans for liver stereotactic body radiotherapy (SBRT). METHODS: Thirteen patients who had undergone liver SBRT treatment in our department were chosen retrospectively for the study. Two sets of SBRT-VMAT plans namely, non-coplanar (NC-VMAT) and Coplanar (C-VMAT) were generated in Monaco(v5.11) planning system for Elekta Versa HD Linac using unflatten 6MV photon. The NC-VMAT plans were created by two/three non-coplanar partial arcs with couch rotation of ±150 and had an arc span of 1300 to 1600 whereas the C-VMAT plans consisted of a full arc. Both plans were compared by statistically analyzing various dosimetric and technical parameters. RESULTS: There is no statistically significant difference observed between the C-VMAT and NC-VMAT plans for planning target volume (PTV) coverage. However, the spine dose (D1cc) was much less in the NC-VMAT plan compared to the C-VMAT plan, with mean values of 6.127 ± 3.08Gy and 9.058 ± 4.76Gy, respectively (p-value=0.002). The low dose spillage to the healthy tissue was compared by the volume receiving 5Gy (V5Gy) and 10Gy (V10Gy). V5Gy of the NC-VMAT plan was 2399.23±1870.76cc while that of C-VMAT plans was 2835.36±1930.20cc with the p-value <0.001. Moreover, the monitor units(MU) were less with NC-VMAT than with C-VMAT SBRT plans (p=0.015). CONCLUSION: The plan quality of NC-VMAT plans was favorable compared to C-VMAT plans for liver SBRT especially in reducing spine dose, low dose spillage to healthy tissue, and MU.


Liver Neoplasms , Organs at Risk , Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Liver Neoplasms/radiotherapy , Liver Neoplasms/surgery , Retrospective Studies , Organs at Risk/radiation effects , Prognosis , Male , Female , Follow-Up Studies , Aged , Middle Aged
18.
Med Phys ; 51(5): 3165-3172, 2024 May.
Article En | MEDLINE | ID: mdl-38588484

BACKGROUND: Simulated error training is a method to practice error detection in situations where the occurrence of error is low. Such is the case for the physics plan and chart review where a physicist may check several plans before encountering a significant problem. By simulating potentially hazardous errors, physicists can become familiar with how they manifest and learn from mistakes made during a simulated plan review. PURPOSE: The purpose of this project was to develop a series of training datasets that allows medical physicists and trainees to practice plan and chart reviews in a way that is familiar and accessible, and to provide exposure to the various failure modes (FMs) encountered in clinical scenarios. METHODS: A series of training datasets have been developed that include a variety of embedded errors based on the risk-assessment performed by American Association of Physicists in Medicine (AAPM) Task Group 275 for the physics plan and chart review. The training datasets comprise documentation, screen shots, and digital content derived from common treatment planning and radiation oncology information systems and are available via the Cloud-based platform ProKnow. RESULTS: Overall, 20 datasets have been created incorporating various software systems (Mosaiq, ARIA, Eclipse, RayStation, Pinnacle) and delivery techniques. A total of 110 errors representing 50 different FMs were embedded with the 20 datasets. The project was piloted at the 2021 AAPM Annual Meeting in a workshop where participants had the opportunity to review cases and answer survey questions related to errors they detected and their perception of the project's efficacy. In general, attendees detected higher-priority FMs at a higher rate, though no correlation was found between detection rate and the detectability of the FMs. Familiarity with a given system appeared to play a role in detecting errors, specifically when related to missing information at different locations within a given software system. Overall, 96% of respondents either agreed or strongly agreed that the ProKnow portal and training datasets were effective as a training tool, and 75% of respondents agreed or strongly agreed that they planned to use the tool at their local institution. CONCLUSIONS: The datasets and digital platform provide a standardized and accessible tool for training, performance assessment, and continuing education regarding the physics plan and chart review. Work is ongoing to expand the project to include more modalities, radiation oncology treatment planning and information systems, and FMs based on emerging techniques such as auto-contouring and auto-planning.


Radiotherapy Planning, Computer-Assisted , Radiotherapy Planning, Computer-Assisted/methods , Health Physics/education , Humans , Medical Errors/prevention & control
19.
Med Phys ; 51(5): 3207-3219, 2024 May.
Article En | MEDLINE | ID: mdl-38598107

BACKGROUND: Current methods for Gamma Knife (GK) treatment planning utilizes either manual forward planning, where planners manually place shots in a tumor to achieve a desired dose distribution, or inverse planning, whereby the dose delivered to a tumor is optimized for multiple objectives based on established metrics. For other treatment modalities like IMRT and VMAT, there has been a recent push to develop knowledge-based planning (KBP) pipelines to address the limitations presented by forward and inverse planning. However, no complete KBP pipeline has been created for GK. PURPOSE: To develop a novel (KBP) pipeline, using inverse optimization (IO) with 3D dose predictions for GK. METHODS: Data were obtained for 349 patients from Sunnybrook Health Sciences Centre. A 3D dose prediction model was trained using 322 patients, based on a previously published deep learning methodology, and dose predictions were generated for the remaining 27 out-of-sample patients. A generalized IO model was developed to learn objective function weights from dose predictions. These weights were then used in an inverse planning model to generate deliverable treatment plans. A dose mimicking (DM) model was also implemented for comparison. The quality of the resulting plans was compared to their clinical counterparts using standard GK quality metrics. The performance of the models was also characterized with respect to the dose predictions. RESULTS: Across all quality metrics, plans generated using the IO pipeline performed at least as well as or better than the respective clinical plans. The average conformity and gradient indices of IO plans was 0.737 ± $\pm$ 0.158 and 3.356 ± $\pm$ 1.030 respectively, compared to 0.713 ± $\pm$ 0.124 and 3.452 ± $\pm$ 1.123 for the clinical plans. IO plans also performed better than DM plans for five of the six quality metrics. Plans generated using IO also have average treatment times comparable to that of clinical plans. With regards to the dose predictions, predictions with higher conformity tend to result in higher quality KBP plans. CONCLUSIONS: Plans resulting from an IO KBP pipeline are, on average, of equal or superior quality compared to those obtained through manual planning. The results demonstrate the potential for the use of KBP to generate GK treatment with minimal human intervention.


Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy Planning, Computer-Assisted/methods , Radiosurgery/methods , Humans , Knowledge Bases , Radiation Dosage
20.
Chin Clin Oncol ; 13(2): 23, 2024 Apr.
Article En | MEDLINE | ID: mdl-38644546

BACKGROUND AND OBJECTIVE: In radiotherapy (RT) for locally advanced cervical cancer, high soft tissue contrast on magnetic resonance imaging (MRI) can ensure accurate delineation of target volumes (TVs) and optimal dose distribution to the RT target and organs at risk (OAR). MRI-guided adaptive RT (MRIgART) is a novel technology that revises RT plans according to anatomical changes occurring throughout the treatment to improve target coverage and minimise OAR toxicity. This review aims to assess the evidence and gaps of MRI use in RT planning and MRIgART in the treatment of cervical cancer, as well as challenges in its clinical implementation. METHODS: Ovid Medline and PubMed were searched using keywords for MRI in RT for cervical cancer. After applying the inclusion and exclusion criteria, the initial search was deduced to 32 studies. A total of 37 final studies were reviewed, including eight additional articles from references. KEY CONTENT AND FINDINGS: In the primary studies, TVs and organ motion were assessed before, during, and after treatment. MRI was used to investigate dose distribution and therapeutic response to the treatment in association with its outcome. Lastly, rationales for MRIgART were evaluated. CONCLUSIONS: It was concluded that MRI enables accurate target delineation, assessment of organ motion and interfraction changes, and monitoring of treatment response through dynamic parameters. Enhanced target coverage and reduced OAR irradiation through MRIgART can improve local control and the overall outcome, although its rationales against the logistical challenges need to be evaluated on further research.


Magnetic Resonance Imaging , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/radiotherapy , Female , Magnetic Resonance Imaging/methods , Radiotherapy Planning, Computer-Assisted/methods
...